

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS

Programme	B.Sc. Physics Honours								
Course Title	ELECTRON	ELECTROMAGNETISM AND NETWORK THEOREMS							
Type of Course	Minor (SET	Minor (SET I: MATHEMATICS FOR PHYSICAL SYSTEMS)							
Semester	Ι								
Academic Level 100 - 199									
Course Details	Credit Lecture		Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	3	-	2	75				
Pre-requisites	Fundamental	s of vector alg	ebra, calculus	and basic elect	tronics				
Course Summary	This course explores different characteristics of electric and magnetic								
	fields, applic networks and	ation of netwo behaviour of	ork theorems circuit compo	for solving var ments in ac cire	rious electrical cuits.				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledg e	Evaluation Tools used
			Category#	
CO1	Revise the concept of charge, coulomb force, electric field, electric dipole and apply Gauss theorem for calculating electric field.	U & Ap	С & Р	Instructor-created exams / Home Assignments
CO2	Identify the sources of magnetism, explain properties of magnetic forces, behaviour of charged particles in magnetic field and apply Amperes law for calculating magnetic field.	U & Ap	C & P	Instructor-created exams / Home Assignments
CO3	Analyse various network		D	Instructor-created
	theorems and apply these	An & Ap	l l	exams / Home

	theorems for solving complex electrical circuits.			Assignments				
CO4	Analyse the behaviour of various electrical components like resistors, capacitors and inductors in pure ac circuit.	An	Р	Instructor-created exams / Home Assignments				
CO5	Design and analyse the behaviour of ac circuits with more than one electrical component.	An & Ap	Р	Seminar Presentation / Group Tutorial Work				
CO6	Develop skills to set up and perform experiments to analyse different properties of electric and magnetic field. Design and construct ac circuits consisting various circuit elements and analyse its properties.	Ар	М	Practical Assignment / Observation of Practical Skills / Viva Voce				
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M) 								

Detailed Syllabus:

Mod	Unit	Content	Hrs	Mar
ule			(45	ks
			+30)	(70)
Ι		ELECTROSTATICS	12	19
	1	Coulomb's law, superposition of forces, Electric field and electric forces	3	
	2	Electric field calculations, Electric field lines	2	
	3	Electric dipoles	2	
	4	Charge and electric flux,	1	
	5	Gauss's law	2	
	6	Applications of Gauss's law	2	
	Relev	ant topics of chapter 21, 22 of Book 1; sections 21.3 – 21.7 of chapter		
	21 and	d 22.1 22.4 of chapter 22 of Book 1		

II		MAGNETISM	11	17				
	 7 Magnetic field, magnetic flux, motion of charged particles in magnetic field. 8 Magnetic force on current carrying conductor, torque on a current 							
	8	Magnetic force on current carrying conductor, torque on a current loop.	2					
	9 Magnetic field of a moving charge, current element and a straight current carrying conductor.							
	10	Force between parallel conductors, Magnetic field of a circular current loop	2					
	11	Ampere's law, Applications ampere's law.	2					
	Section coils)	ons 27.1-27.4, 27.6, 27.7 (section 27.7 - till magnetic torque: loops and of chapter 27 and sections 28.1 -28.7 of chapter 28 of Book 1						
III	I NETWORK THEOREMS							
	12	Electrical circuits, Kirchhoff's laws.	2					
	13	Solving simultaneous equations, solving equations with two and three unknowns.	2					
	14Source conversion, Ideal constant voltage source, Ideal constant current source, Superposition theorem.							
	15	Thevenin theorem.	2					
	16	Norton's theorem.	2					
	17	Maximum power transfer theorem.	1					
	Section Book	ons 2.1 - 2.8, 2.14 – 2.20, 2.25 – 2.27 and 2.30 – 2.31 of chapter 2 of 2						
IV		AC CIRCUITS	11	17				
	18	Generation of alternating voltage and current, equation of the alternating voltage and current, AC through pure resistance, pure inductance and pure capacitance alone.	3					

	19	mathematical representation of vectors	1					
	20	AC through resistance and inductance.	2					
	21 A.C. through resistance and capacitance.							
	22	Resistance, inductance and capacitance in series.	3					
	Section chapte	ons 11.1 – 11.2, 11.28 – 11.30, 11.32, 12.1 – 12.7, 13.1 – 13.19 of er 11, Chapter 12 and 13 of book 2						
V		PRACTICALS	30					
	Cond	uct any 6 experiments from the given list and 1 additional experiment,						
	decide	ed by the teacher-in-charge, related to the content of the course. The 7 th						
	experi	iment may also be selected from the given list. Other experiments listed						
	here may be used as demonstrations of the concepts taught in the course.							
	1Mapping of the magnetic field lines of a bar magnet.							
	• Fix a paper on a drawing board kept on a table and place the bar magnet at the center along the magnetic meridian.							
		• Mark the null points (where the horizontal component of Earth's magnetic field, Bh cancels the field due to magnet) along the axial/equatorial line and measure the distance, 2d, between them.						
	• Calculate the moment of the magnet. $m = \frac{4\pi}{\mu_0} \frac{(d^2 - l^2)^2}{2d} B_h$							
	2 Study the variation of the magnetic field strength of a bar magnet using a smartphone magnetometer.							
		• Using a smartphone magnetometer, measure the strength of the magnetic field of a bar magnet, along the axial and equatorial lines and plot the data.						
		• Magnetometer in the Phyphox app may be used to get the data after locating the approximate position of the magnetometer sensor.						

	• Fit the theoretical formulae to the data and obtain magnetic fi dipole moment. Along the axial line $B = \frac{\mu_0}{4\pi} \frac{2md}{(d^2 - l^2)^2}$ and along the equatorial line $B = \frac{\mu_0}{4\pi} \frac{m}{(d^2 + l^2)^{3/2}}$							
 3 Determine the moment of a bar magnet and Bh using a deflection magnetometer and a box type vibration magnetometer 								
	 Determine m/Bh using deflection magnetometer in Tan A position and mBh using box type vibration magnetometer. Hence calculate the moment of the magnet and Bh. If the same magnet was used, compare the dipole moment with that of experiment 2 and 3. 							
4	 Circular coil- Verification of Biot Savart's law and determination of Bh Move a compass through a platform along the axis of the coil carrying a study current. Note the deflection of the needle and plot magnetic flux density (B = B_htanθ) as a function of distance. Optional: Smartphone magnetometer may be used to measure the strength of the magnetic field along the axial line and plot the data. <u>https://phyphox.org/experiment/magnetic-field/</u> Experiment 62 of Book 6 By varying current and (or) distance of the compass box along the axial line of the coil, note the deflection and hence determine the value of Bh. 							
5	 Reduction factor of TG using potentiometer. Standardize the given potentiometer using a Danial cell or any other constant voltage source and use the standardized potentiometer to find the current through the TG. By observing the deflection in the TG for different currents, calculate the reduction factor. From the magnetic field at the center of a circular coil, deduce the value Bh. 							

	6	Verification of Kirchoff's laws/ Superposition theorem.							
		• Verify Kirchoff's current law at a junction where a minimum of three branches meet.							
		• Verify Kirchoff's current law for a network with two loops.							
		OR							
		• Verify the superposition theorem for a network with two sources, S1 and S2.							
		• First set particular voltage values in S1 and S2 and note down the ammeter reading.							
		• Set the same voltage in S1 and short circuit S2 and vise versa, note down the ammeter readings and verify the superposition theorem.							
	7	Verification of Thevenin's theorem and maximum power transfer							
		Theyenin's theorem							
		• Macrure the surment through the lead resistence of the network							
		• Measure the current through the load resistance of the network.							
		• Estimate the values of R_{TH} and V_{TH} , construct the Thevenin's							
		resistance and compare the two results with the theoretical values.							
		Maximum power transfer theorem							
		• Measure the current through load resistance and estimate the power. Plot $R_L - P$ graph and find the R_L corresponding to the							
		maximum power.							
		• Calculate the % of error with the theoretical value.							
Ī	8	AC three phase generator							
		• Rotate a neodymium magnet about an axis perpendicular to its dipole axis and fix three coils displaced equally from each							
		other, i.e., 120 [°] separated.							
		• Analyze the induced emf developed in the coils using CRO/ExpEYES and the phase relationship between the three induced voltages.							
		• <u>https://expeyes.in/experiments/school-level/ac-generator.html</u>							
	9	RL and RC series AC circuits- Phase relationships of voltage across the elements.							

	• Using a CRO/ ExpEYES, verify the phase relationship between voltage across the inductor/capacitor and the current.				
	• Note the phase difference between the applied voltage and current and determine the value of inductance/capacitance.				
	OR				
	• Note the peak voltage and current and determine the value of inductance/capacitance.				
	• <u>https://expeyes.in/experiments/electrical/rcsteady.html</u>				
	• <u>https://expeyes.in/experiments/electrical/rlsteady.html</u>				
	• <u>https://expeyes.in/experiments/school-level/ac-rc.html</u>				
	• <u>https://expeyes.in/experiments/school-level/ac-rl.html</u>				
10	Series LCR circuits-Determination of resonance frequency, quality factor and bandwidth.				
	• The frequency of the signal generator is changed in steps and the corresponding voltage across the resistance is noted.				
	• From the graph drawn for current against frequency, find the frequency corresponding to maximum voltage- resonant frequency. Also find the bandwidth and quality factor				
	• CRO/Multimeter/ExpEYES can be used. <u>https://expeyes.in/experiments/electrical/rlcsteady.html</u>				
11 Thomson's e/m experiment - Determination of the specific charge of the electron.					
	• Measure the ratio of the electron charge-to-mass ratio (e/m) by studying the electron trajectories in a uniform magnetic field.				
12	Parallel plate capacitor. (a) verify the relationship between capacitance and the area of the plates (b) determination of dielectric constant of thin dielectric sheet				
	• Form a parallel plate capacitor with dielectric material filled between the plates.				
	• Multimeter/ ExpEYES can be used to measure the capacitance. (For a significantly measurable value of the capacitance, use plates of dimension 10cmx10cm, or greater)				
	• Change the area of the capacitor plates and verify the relationship of the capacitance on the area (Using the same set of plates, the area can be changed by varying the overlapping region of the plates)				

	• By measuring the capacitance for different areas of the capacitor plates and (or) thickness of the dielectric material, determine the dielectric constant of the given material/liquid.					
	• <u>https://www.youtube.com/watch?v=lKfIkUuFT-U</u>					
13	Verification of Faraday's law and Lenz's law of electromagnetic induction					
	• Verify Faraday's law and Lenz's law by measuring the induced voltage across a coil subjected to the varying magnetic field. (section 7.2.1 of Book 1)					
	• Galvanometer/ExpEYES can be used to measure the induced emf.					
	• In the third experiment, for better coupling between the coils, use a high permeability material like iron or ferrite core, and observe the change in the induced emf.					
	• <u>https://expeyes.in/experiments/school-level/mutual-induction.h</u> <u>tml</u>					
	• Simulation: <u>https://phet.colorado.edu/sims/html/faradays-law/latest/faraday</u> <u>s-law_all.html</u>					
14 Analysis of induced emf developed in a coil as a magnet dropping through it.						
	• Drop a neodymium magnet through a coil, guided through a vertical tube.					
	• Repeat the experiment by dropping the magnet, through different heights from the coil and by changing the approaching pole.					
	• Capture the induced emf as a function of time using ExpEYES, note the maximum value of the emf and verify Faraday's law and Lenz's law of induced emf and flux change.					
	• Example 7.6 of Book 1					
	• <u>https://expeyes.in/experiments/school-level/em-induction.html</u>					
15	Demonstration of Eddy currents					
	• Mount aluminum/copper disk as a pendulum on a horizontal axis and observe the 'viscous drag' as it swings down and passes between the poles of a magnet (Can be realized using					

two pieces of neodymium magnet. The demonstration illustrated in Fig. 7.16 of Book 3).	
• <u>https://www.youtube.com/watch?v=qTkOpprVITM</u>	
OR	
• Form a simple pendulum with a neodymium magnet and observe the 'viscous drag' as it swings down when an aluminium/copper sheet/block is placed under the pendulum.	
• <u>https://www.youtube.com/watch?v=VK40utGgioI</u>	
• <u>https://www.youtube.com/watch?v=SF4xjO2RN1w</u>	
OR	
• Drop a neodymium magnet through an aluminium/copper tube and observe the delay in the fall of the magnet. Tubes of different gauge may be used for the demonstration.	
• Keep the two probes at diametrically opposite points of the pipe and note the emf and current when a magnet is allowed to fall through the pipe.	
• <u>https://www.youtube.com/watch?v=H31K9qcmeMU</u>	
Books and References:	

- 1. University Physics with Modern Physics (Edn.15) by Young & Freedman (Book 1)
- A Textbook of Electrical Technology, Volume I (Revised 23rd Edition) by B. L. Thereja and A. K. Thereja (Book 2)
- 3. Introduction to Electrodynamics-David J Griffith, 4th Edition, Pearson (Book 3)
- 4. Electricity and Magnetism by R. Murugesan- S Chand and Company Limited (Book 4)
- 5. Basic electrical engineering by V. K. Mehta and Rohit Mehta S Chand and Company Limited (Book 5)
- Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 6)

	PS	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	2	3		05	6							
CO 1	2	1	3	0	2	2	2	2	2	1	3	2	0
CO 2	2	1	2	0	2	2	2	2	2	1	3	2	0
CO 3	2	2	3	1	1	1	2	2	2	1	3	2	0
CO 4	0	0	2	3	1	1	2	2	2	1	3	2	0
CO 5	0	0	2	1	2	2	2	2	2	1	3	2	0
CO 6	2	3	2	2	1	1	2	2	2	1	3	2	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/ Practical Exam	Assignmen t/Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	1	1		1
CO 2	✓	1		✓
CO 3	✓	1		✓
CO 4	✓	1		✓
CO 5	1	1		✓
CO 6		1	1	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours					
Course Title	MODERN PHYSIC	MODERN PHYSICS AND NUCLEAR PHYSICS				
Type of Course	Minor (SET II: M	ATERIALS	PHYSICS)			
Semester	П					
Academic Level	100 - 199					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	 Foundational under mechanics and electric Proficiency in alg 	rstanding of romagnetism ebra, calculu	classical phy .s and trigono	sics, particula	rly in	
Course Summary	This course explores the dual nature of particles and waves, as well as the structure and behavior of atomic and nuclear systems. Through theoretical discussions and practical applications, students will investigate electromagnetic waves, particle-wave duality phenomena, atomic structure, nuclear composition, and nuclear transformations.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the duality of particles and waves, Describe experimental evidence supporting the wave-particle duality, including the photoelectric effect and Compton effect.	U	С	Instructor-create d exams / Quiz
CO2	Define pair production and its significance in quantum	U, Ap	Р	Seminar Presentation /

	mechanics, Understand the concept of matter waves proposed by Louis de Broglie			Group Tutorial Work				
CO3	Explain the structure of the atom according to the nuclear model, Understand Energy Levels and Spectra	Ар	Р	Practical Assignment / Observation of Practical Skills				
CO4	Investigate Nuclear Structure Understand stable nuclei, binding energy, and models such as the liquid drop model and shell model	U	С	Instructor-create d exams / Home Assignments				
CO5	Understand radioactive decay processes and their implications for nuclear stability,	Ар	Р	One Minute Reflection Writing assignments				
CO6Analyse nuclear reactions, including fission and fusion, and their relevance in energy production and stellar evolution.ApPWriting assignments /Viva Voce								
* - Re # - Fa Metac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

Modul e	Uni t	Content	Hrs (45 +30)	Mar ks (70)
Ι		Particle properties of waves & Wave properties of particles	12	15
	1	Electromagnetic Waves, Black body Radiation	3	
	2	Photoelectric Effect	2	
	3	Compton Effect	2	
	4	Pair Production	3	
	5.	De Broglie Waves	2	
	Sectio	ons from References: 2.1, 2.2, 2.3, 2.7, 2.8, 3.1, Book 1		
II		Atomic Structure	10	22
	6	The Nuclear Atom	2	
	7	Electron Orbits	2	

	8	Atomic Spectra	2	
	9	The Bohr Atom	2	
	10	Energy Levels and Spectra	2	
	Sectio			
III		Nuclear Structure	13	20
	11	Nuclear composition	2	
	12	Nuclear properties	2	
	13	Stable nuclei	2	
	14	Binding energy	2	
	15	Liquid drop model, Shell model	2	
	16	Magic numbers	1	
	17	Meson theory of nuclear forces.	2	
	Sectio	ons from References:11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, Book 1		
IV		Nuclear Transformations	10	13
	18	Radioactive decay, radioactivity and the Earth	1	
	19	Half-life, Radiometric dating	2	
	20	Alpha decay, Beta decay, Gamma decay	3	
	21	Nuclear reactions, Nuclear fission	3	
	22	Nuclear fusion in stars	1	
	Section 12.5,	ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1		
V		PRACTICALS	30	
	Cond	uct any 6 experiments from the given list and 1 additional experiment,		
	decid			
	exper			
	listed			
	cours	e.		
	Neces	ssary theory of experiments can be given as Assignment/ Seminar.		
	1	Determination of Plank's constant using LEDs		

	• Observe the turn-on voltage, V_0 of LEDs and calculate the	
	value of h Use at least 4 different colors of LED (with	
	transparent casing)	
	• Plot $\frac{1}{\lambda} - V_0$ graph using Python, fit a straight line to get the	
	slope and estimate the value of <i>h</i> .	
	• Calculate the %error.	
	• Programmable voltage source of ExpEYES may be used to	
	find the turn-on voltage.	
2	Continuous and line spectra- Determination of the wavelengths	
	and photon energy.	
	• Familiarize the initial adjustments and measurements in the	
	spectrometer.	
	• Mount the grating at normal incidence on the spectrometer.	
	• Determine the wavelengths of the sodium vapor lamp and	
	calculate the associated photon energy.	
	• Determine the approximate range of the wavelengths of the	
	continuous spectrum of incandescent/white LED lamp or any	
	one coloured LED and calculate the associated photon energy.	
	• The readings of the first order spectrum will be enough.	
	Number of lines/m of the grating can be given.	
3	Mercury spectrum- Determination of wavelength and photon	
	energy.	
	• Determine wavelength of any four prominent lines and	
	associated photon energy of the mercury spectrum using a	
	spectrometer with grating at normal incidence	
	 The readings of the first order spectrum will be enough 	
	Number of lines/m of the grating may be given	
4	Hydrogen spectrum - Determination of wavelengths and	
·	calculation of the Rydberg's constant.	
	• Determine the wavelengths and photon energy in eV of the	
	prominent lines of the Balmer series of the Hydrogen	
	spectrum using a spectrometer with grating at normal	
	incidence.	
	• Calculate the Rydberg's constant and estimate the % error.	
	• The readings of the first order spectrum will be enough.	
	Number of lines/m of the grating may be given.	
5	Wave Packets - Analysis of beats in sound.	
	• The experiment is intended to understand the concept of wave	
	packet, phase and group velocities.	
	 Generate sounds waves of two near frequencies using 	
	smartphone/ExpEYES/Function generator and the	
	superimposed wave can be recorded and analysed using	
	smartphone/ExpEYES/CRO	
	• Change the separation between the frequencies and compare	
	the results with the theoretical values.	
	• https://expeves.in/experiments/sound/beats.html	

	Multi Tone generator and Audio scope tools of Phyphox may	
	be used https://phyphox.org/experiment/tone-generator/	
6	7. Analysis of Hydrogen spectra using the Tracker Video Analysis	
	tool.	
7	 Calibrate the video of the Hydrogen spectra in the Tracker tool using two laser wavelengths/lines of mercury spectra. Plot the intensity profile, find the prominent wavelengths of the Balmer series and calculate the Rydberg's constant. Estimate the %error. Pre recorded video of the Hydrogen spectra can be used. <u>https://physlets.org/tracker/</u>. <u>https://www.youtube.com/watch?v=UCCPkJpUQEw</u> Black body spectrum of Sun -Estimation of surface temperature using the Tracker Video Analysis tool. Calibrate the video of the solar spectra in the Tracker tool 	
	 using two laser wavelengths/lines of mercury spectra. Plot wavelength vs intensity, get λ_{max} and using Wein's law 	
	 calculate the surface temperature. Pre recorded video of the solar spectra can be used 	
8	Verification of Wein's displacement law and Stefan's law using	
Ũ	incandescent bulb.	
	 Calibrate the video of the spectra of the incandescent bulb in the Tracker tool using two laser wavelengths/lines of mercury spectra. Plot wavelength vs intensity and note 	
	• Popost the experiment by increasing the operating voltage of	
	 Repeat the experiment by increasing the operating voltage of the incandescent bulb(hence increasing the temperature of the source) From the plots, verify the Wein's displacement law and 	
	Stefan's law.	
9	Study the specific rotation of the sugar solution using a	
	polarimeter.	
	 Determine the specific rotation corresponding to different concentrations of the sugar dissolved in water. Draw a graph between rotation and concentrations and verify the linear relationship. 	
10	Verification of Malus's law using polarizer, analyzer and photo	
	detector	
	 Unpolarized light is allowed to pass through a polarizer and is observed through an analyzer. Vary the angle between the axes of polarizer and analyzer and measure the intensity of the light (current output of the photodetector). 	
	• Plot $\theta - I$ and $\cos^2 \theta - I$ graphs and verify the Malus's law.	

	 A flat computer monitor (or LCD TV screen) in plain white color can be used as the source of linear polarized light. The ambient light sensor of the smartphone and the orientation sensor of the smartphone can be used to measure the illuminance and the angles respectively. A small piece of polarizer (a square of about 1 cm side) from an old calculator's display was placed over the ambient light sensor as analyser. <u>https://arxiv.org/pdf/1607.02659</u> 	
11	Brewster's law experiment, determination of angle of polarisation	
	and refractive index.	
	 Experimental arrangement- Sodium vapour lamp, Spectrometer, Polarizer (Graduated on 360° rotating) coupled in front of the spectrometer telescope, prism or glass plate. Get the angle of incidence corresponding to the minimum intensity of light and hence calculate the refractive index of the material. <u>https://www.youtube.com/watch?v=f2A8sM1xhbQ</u> 	
12	Mapping of the magnetic field lines of a bar magnet.	
	 Fix a paper on a drawing board kept on a table and place the bar magnet at the center along the magnetic meridian. Using a small compass needle, map the magnetic field lines of the magnet placed with north pole pointing south Mark the null points (where the horizontal component of Earth's magnetic field, Bh cancels the field due to magnet) along the axial/equatorial line and measure the distance, 2d, between them. Calculate the moment of the magnet. m = 4π/(μ₀ (d²-l²)²/2d} B_h 	
 13	Circular coil- Verification of Biot Savart's law and determination	
	of Bh.	
	• Move a compass through a platform along the axis of the coil carrying a study current. Note the deflection of the needle and plot magnetic flux density ($B = B_h tan\theta$) as a function of	
	 distance. Optional: Smartphone magnetometer may be used to measure the strength of the magnetic field along the axial line and plot the data. <u>https://phyphox.org/experiment/magnetic-field/</u> Experiment 62 of Book 2 By varying current and (or) distance of the compass box along the axial line of the coil, note the deflection and hence determine the value of Bh. 	
14	Calibrate the ammeter using potentiometer	
	• Standardize the potentiometer using a Danial cell or any other standard voltage source.	

	• Determine the current for at least 8 trials and draw the calibration graph.	
15	 Calibration graph. Parallel plate capacitor. (a) verify the relationship between capacitance and the area of the plates (b) determination of dielectric constant of thin dielectric sheet. Form a parallel plate capacitor with dielectric material filled between the plates. Multimeter/ ExpEYES can be used to measure the capacitance. (For a significantly measurable value of the capacitance, use plates of dimension 10cmx10cm, or greater) 	
	 Change the area of the capacitor plates and verify the relationship of the capacitance on the area (Using the same set of plates, the area can be changed by varying the overlapping region of the plates) By measuring the capacitance for different areas of the capacitor plates and (or) thickness of the dielectric material, determine the dielectric constant of the given material/liquid. <u>http://www.indosawedu.com/dielectric-constant.php</u> 	
	https://www.youtube.com/watch?app=desktop&v=sx0tzAj-Dm4 https://www.youtube.com/watch?v=lKfIkUuFT-U	

Books and References:

- 1. Concepts of Modern Physics, Arthur Beiser 6th Edition (Book 1)
- 2. Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 2)
- 3. Modern Physics for Scientists and Engineers" by John Morrison
- 4. Modern Physics by Raymond A. Serway
- 5. Introduction to Nuclear and Particle Physics V K Mittal, R C Verma and S C Gupta
- 6. Introductory Nuclear Physics by Kenneth S. Krane
- 7. Principles of Nuclear Physics by A. B. Migdal
- 8. <u>https://phyphox.org/</u>
- 9. https://physlets.org/tracker/
- 10. https://expeyes.in/

Mapping of	of COs	with	PSOs	and	POs :
------------	--------	------	------	-----	-------

	PS	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	РО	РО
	01	2	3		05	6						6	7
CO 1	3	2	2	1	1	0	3	2	1	1	2	0	0
CO 2	2	3	2	1	1	1	3	3	1	0	2	0	0
CO 3	1	2	3	3	1	1	2	2	2	2	2	0	0

CO 4	1	1	1	3	2	2	2	1	2	2	3	0	0
CO 5	1	2	1	1	3	1	2	2	2	2	3	0	0
CO 6	1	2	1	1	3	2	2	1	2	2	3	0	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/ Practical Exam	Assignment	Practical Skill	End Semester
CO 1		/ 11/4		
01	v	v		×
CO 2	✓	1		✓
CO 3	✓	✓		✓
CO 4	\checkmark	✓		✓
CO 5	✓	✓		✓
CO 6		✓	✓	