

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours						
Course Title	MATHEMATICA	AL METHOI	DS FOR PHY	SICS			
Type of Course	Minor (SET I: M	ATHEMATI	CS FOR PHY	YSICAL SYS	ΓEMS)		
Semester	III						
Academic Level	200 – 299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Fundamentals of v	ectors, linear	algebra, diffe	rential equation	ıs		
	coordinate systems and familiarity with basic concepts in physics.						
Course	This course explores fundamental principles and applications of vector						
Summary	analysis, complex functions, differential equations and curvilinear						
	coordinates in elec	tromagnetism	and engineer	ring contexts.			

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Students will attain a strong			Instructor-cr
	foundational understanding about	U	С	eated exams /
	vector calculus, complex numbers,			Quiz
	differential equations and curvilinear			
	coordinates			

CO2	Students will develop analytical			Practical
	proficiency which enables them to			Assignment /
	analyse and interpret complex physical	Ар	P & M	Observation
	phenomena through the application of	· ·P		of Practical
	mathematical principles.			Skills
CO3	Students will cultivate advanced			Practical
	problem-solving skills.	Ар	Р	Assignment /
	problem-solving skins.	лр	1	Observation
				of Practical
				Skills
CO4	Students will enhance their ability to			Practical
	model and represent physical systems			Assignment /
	mathematically for describing and	Ap	P M	Observation
	understanding complex phenomena.			of Practical
				Skills / Home
				Assignments
CO5	Students will recognize and appreciate			Seminar
	the interdisciplinary applications of	Ар	C & M	Presentation /
	mathematical methods.			Group
				Discussion
CO6	Students will refine their critical			Group
	thinking which encourages			Discussion/
	independent inquiry and	Ар	P & M	Viva Voce
	problem-solving approaches in			
	tackling challenging problems and			
	scenarios.			
* - Rei	member (R), Understand (U), Apply (Ap),	, Analyse (An), Evalu	<u> </u>
	, Create (C)	- `		
Ì	tual Knowledge(F) Conceptual Knowledg	ge (C) Proced	ural Knowledge	(P)
	ognitive Knowledge (M)	- 、 /	5	

Detailed Syllabus:

Modul	Uni	Content	Hrs	Mark
e	t		(45	S
			+30	(70)
)	
Ι		VECTOR CALCULUS	12	20
	1	Scalar and Vector Point Functions, Gradient of a Scalar Function	4	
		Geometrical Meaning of Gradient		
	2	Normal and Directional Derivative, Divergence of a Vector Function,	4	
		Electrostatic Fields		
	3	Curl, Physical Meaning of Curl, The Divergence and Curl of B	4	
	Sectio	ons 2.4, to 2.11 of book 2, Sections $2.2.1 - 2.2.4$ of chapter 2 and		
	Sectio	on 5.3.1 – 5.3.3 of chapter 5 of book 1		
II		COMPLEX NUMBERS AND COMPLEX FUNCTIONS	11	15
	4	Introduction, Complex Numbers	1	
	5	Geometrical Representation of Imaginary Numbers Argand Diagram	1	
	6	Equal Complex Numbers, Addition, Addition of Complex Numbers	1	
		by Geometry		
	7	Subtraction, Powers of <i>i</i> , Multiplication, <i>i</i> (Iota) as an	1	
		Operator, Conjugate of a Complex Number		
	8	Division, Division of Complex numbers by Geometry	1	
	9	Modulus and Argument, Polar form, Types of Complex Numbers	1	
	10	Resistance and Reactance	2	
	11	The L-R-C series Circuit	3	
	Sectio	ons 20.1 to 20.17 of book2, Sections 31.2 and 31.3 of book 3		
III		ORDINARY DIFFERENTIAL EQUATIONS	12	20
	12	Definition, order and Degree of a Differential Equation	1	
	13	Formation of Differential Equations, Solution of a Differential	1	
		Equation		

	14	Geometrical Meaning of the Differential Equation of the First order	2	
		and First Degree, Differential Equations of the First order and First		
		Degree		
	15	Variables Separable, Homogeneous Differential Equations, Equations	4	
		Reducible to Homogeneous form, Linear Differential Equations,		
		Equations Reducible to the Linear form (Bernoulli Equation)		
	16	Non-Linear Differential Equations, Linear Differential Equations of	2	
		Second order with Constant Coefficients		
	17	Periodic Motion- Simple Harmonic motion. Applications of simple	2	
		Harmonic motion, Damped oscillations		
	Section	ons 12.1 to 12.11, 13.2, 13.3 of book 2, Sections 14.2, 14.4, 14.7 of		
	Book	3		
IV		CURVILINEAR COORDINATES	10	15
	18	Curvilinear Coordinates	1	
	19	Cylindrical (Polar) Co-ordinates	2	
	20	Spherical Polar Co-ordinates	2	
	21	Relation Between Cylindrical and Spherical Co-ordinates	2	
	22	Applications of Gauss's Law in polar, cylindrical and spherical	3	
		problems		
	Section	ons 4.1, 4.8, 4.9, 4.12 of book 2, Section 2.2.3 Application of Gauss's		
	law o	f Book 1		
V		PRACTICALS	30	
	1	Flywheel- Determination of the Moment of Inertia.		
		• This experiment aims to help students grasp the concept of		
		energy conservation and the dynamics of rotation.		
		• Do at least 9 trials for different masses and number of turns		
		wound on the axil.		
	2	Torsion Pendulum- Determination of the Moment of Inertia.		
		• Using identical masses on the disc, determine the moment of		
		inertia of the disc.		
		• Verify the moment of inertia by direct method, $I = \frac{1}{2}MR^2$		

3	Compound Pendulum- Acceleration Due to Gravity and Moment
	of Inertia and Verification of Parallel Axis Theorem.
	Plot a graph of distance of knife edge from one end Vs period
	of oscillations. Using the measurement from the graph,
	calculate g.
	• Calculate the radius of gyration and hence the moment of
	inertia about CM. Compare the result obtained by the direct
	calculation $I_{CM} = \frac{ML^2}{12}$
4	Kater's Pendulum- Determination of Earth's Gravity.
	• To determine g and discuss the relative merits of both cases
	by estimation of error in the two cases.
5	Sonometer - Determine the Frequency of AC.
	• Estimate the linear mass density of the wire.
	• Draw $L^2 - m$ graph and from the slope calculate the
	frequency.
6	Determination of the Velocity of Sound in Air.
	• Sound wave of known frequency is generated using a wave
	generator(WG) and piezo buzzer and are recorded using a
	microphone(MIC).
	Phase differences between the WG and MIC waveforms were
	analyzed in a CRO and the distance between them were
	adjusted to make both of them in phase and hence calculate
	velocity of sound.
	Phase difference can be analyzed from the Lissajous figure
	obtained by X-Y plotting of WG and MIC waves.
	• ExpEYES may be used.
	• <u>https://expeyes.in/experiments/sound/velocity.html</u>
	• <u>https://expeyes.in/experiments/electrical/xyplot.html</u>

7	Pendulum- Limits on Angular Displacement and Study of
	Damped Oscillations.
	• Estimate limits on angular displacement for SHM by
	measuring the time period at different angular displacements
	and compare it with the expected value of time period for
	SHM.
	• Study damped oscillations. Plot amplitude as a function of
	time and determine the damping coefficient and Q factor.
	• Digitized data can be used for the study.
	• <u>https://www.youtube.com/watch?v=jcpvm95bhXw</u>
	<u>https://expeyes.in/experiments/school-level/sr04.html</u>
	• <u>https://phyphox.org/experiment/pendulum/</u>
8	Black body spectrum of Sun -Estimation of surface temperature
	using the Tracker Video Analysis tool.
	• Calibrate the video of the solar spectra in the Tracker tool
	using two laser wavelengths/lines of mercury spectra.
	• Plot wavelength vs intensity, get λ_{max} and using Wein's law
	calculate the surface temperature.
	• Pre recorded video of the solar spectra can be used.
9	Analysis of Hydrogen spectra using the Tracker Video Analysis
	tool.
	• Calibrate the video of the Hydrogen spectra in the Tracker
	tool using two laser wavelengths/lines of mercury spectra.
	• Plot the intensity profile, find the prominent wavelengths of
	the Balmer series and calculate the Rydberg's constant.
	• Estimate the %error.
	• Pre recorded video of the Hydrogen spectra can be used.
	• <u>https://physlets.org/tracker/</u> .
	• <u>https://www.youtube.com/watch?v=UCCPkJpUQEw</u>

10	RC and RL transients - determination of capacitance and	
	inductance.	
	• Apply a voltage step to a series RC/RL circuit and record the	
	resulting voltage variation across the capacitor/inductor.	
	• Get the value of time constant by an exponential fit to the	
	data.	
	Repeat the experiment for different resistances.	
	<u>https://expeyes.in/experiments/electrical/rctransient.html</u>	
	<u>https://expeyes.in/experiments/electrical/rltransient.html</u>	
11	Determination of Plank's constant using LEDs	
	• Observe the turn-on voltage,	
	• V_0 of LEDs and calculate the value of <i>h</i> . Use at least 4	
	different colors of LED (with transparent casing)	
	• Plot $\frac{1}{\lambda} - V_0$ graph using Python, fit a straight line to get the	
	slope and estimate the value of <i>h</i> .	
	Calculate the %error.	
	Programmable voltage source of ExpEYES may be used to	
	find the turn-on voltage.	
12	Construction of the center tapped full wave rectifiers and	
	regulated power supply	
	• Construct a center tapped full wave rectifier without filter and	
	with a filter.	
	• Measure the AC and DC voltages using a multimeter and	
	calculate the ripple factor without and with a filter.	
	Observe the variation of the ripple factor with load resistance,	
	when filter is used.	
	Construct 5V/12V regulated power supply using 78XX IC.	
13	Construct Half adder using universal gates and study the	
	operation.	
	• Implement half adder using NAND/NOR gates and verify the	
	truth table for each input/output combination.	

	14	Varification of Do Mangan's Theorems using basic gates			
	14	Verification of De-Morgan's Theorems using basic gates.			
		• Realize the either side of the De-Morgan's Theorems using			
		gates from appropriate ICs and verify the truth table for each			
		input/output combination.			
	15	Construction of the center tapped full wave rectifiers and			
		regulated power supply.			
		• Construct a center tapped full wave rectifier without filter and			
		with a filter.			
		• Measure the AC and DC voltages using a multimeter and			
		calculate the ripple factor without and with a filter.			
		• Observe the variation of the ripple factor with load resistance,			
		when filter is used.			
		• Construct 5V/12V regulated power supply using 78XX IC.			
Books an	d Refe	rences:			
1. Introduction to Electrodynamics by David J Griffiths, 5th Edition (Book 1)					
2. M	lathem	atical Physics by H K Das and Rama Verma, 7th Edition (Book 2)			
3. U	niversi	ty Physics With Modern Physics by Hugh D Young and Roger A Freedman 14th edition	on		

(Book 3)

4. Mathematical Physics by Satya Prakash - S Chand and Sons

Mapping of COs with PSOs and POs:

	PS	PS	PS	PSO	PS	PS	РО						
	01	02	O3	4	05	06	1	2	3	4	5	6	7
CO 1	3	1	2	0	2	2	3	2	2	1	3	2	1
CO 2	2	3	2	1	1	1	2	2	2	1	3	2	0
CO 3	1	2	3	1	2	1	2	2	2	1	3	2	1
CO 4	2	1	1	3	2	1	2	2	2	1	3	2	0
CO 5	2	2	2	1	3	1	2	2	2	1	3	2	1
CO 6	2	1	3	0	2	3	2	2	2	1	3	2	1

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/	Assignme	Practical Skill	End Semester
	Practical Exam	nt /Viva	Evaluation	Examinations
CO 1	✓	1		✓
CO 2	1	1		✓
CO 3	1	1		✓
CO 4	1	1		✓
CO 5	1	1		✓
CO 6		1	1	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours							
Course Title	SOLID STATE PHYSICS AND SPECTROSCOPY							
Type of Course	Minor (SET II: MATERIALS PHYSICS)							
Semester	ш							
Academic Level	200 - 299							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Basic knowledge cal	culus, atomi	c theory and	electromagnet	tic spectrum			
Course	This course discusse	es the concept	ots of quantum	m mechanics,	band theory			
Summary	and different types o	f spectroscoj	py at a funda	mental level.				

Course Outcomes (CO):

СО	CO Statement	Cogniti ve Level*	Knowle dge Categor y#	Evaluation Tools used
CO1	Define quantum mechanics and its			
	fundamental principles, explain the concept of			

				T
	quantization, understand the mathematical		_	Instructor-create
	representation of wave functions and their	U & Ap	Р	d exams /
	interpretation. Application of Schrodinger			Quiz/Assignmen
	equation for solving different physical systems.			ts
CO2	Understanding of Crystalline and Amorphous			Instructor
	Solids and distinguishing between them.			created
	Understand the relationship between bonding	U	С	Assignment /
	and properties in different types of crystals			Exams/Seminars
CO3	Explain band theory of solids and apply it in			Seminar/Present
	explaining the electronic structure of materials.			ation / Group
	Describe the formation of energy bands and			Tutorial Work
	band gaps in solids and their influence on	Ар	Р	
	material properties.			
CO4	Explain the concept of quantization of energy			
	and its importance in spectroscopy. Identify the			
	types of molecular energies. Describe the			Instructor-create
	process of absorption and emission of radiation	U	С	d exams / Home
	and understand the Einstein coefficients			Assignments
	governing these processes and their relation.			
CO5	Classify various spectroscopic methods used			
	for sample analysis, like microwave			One Minute
	spectroscopy, Infrared Spectroscopy, Electronic	An	Р	Reflection
	spectroscopy, Raman spectroscopy and analyse			Writing
	the possibility of applying these techniques to			assignments and
	identify material properties.			exams
CO6	Develop practical skills to perform spectra and			Practical
	material property related experiments and	E & C	М	Assignment /
	analyse characteristics of different spectras.			Observation of
				Practical Skills /
				Viva Voce
* - Rer	l nember (R), Understand (U), Apply (Ap), Analyse	(An), Eva	luate (E),	Create (C)
	tual Knowledge(F) Conceptual Knowledge (C) Pr			
	edge (M)		-	-
i				

Detailed Syllabus:

Modul	Uni	Content	Hrs	Mar
e	t		(45	ks
			+30)	(70)
Ι		Quantum Mechanics	16	22
	1	Quantum Mechanics	2	
	2	The Wave Equation	2	
	3	2		
	4	Expectation Values	3	
	5	Operators	2	
	6	3		
	7	Particle in a box problem	2	
	Sectio	ons 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 5.8 of chapter 5 of Book 1		
II		Bonding in Solids and Energy Bands	11	18
	8	Crystalline and amorphous solids	2	
	9	Ionic Crystal	2	
	10	Covalent Crystal	1	
	11	Van der Waal's bond	2	
	12	Metallic bond	2	
	13	Band Theory of Solids	2	
	Sectio	ons 10.1, 10.2, 10.3, 10.4, 10.5, 10.6 of Book 1		
III		Introduction to Spectroscopy	10	16
	14	Electromagnetic spectrum and Quantization of energy	1	

	15	Types of molecular energies and spectroscopic methods	3	
	16	Spectral line width	2	
	17	Absorption and emission of radiation, Einstein coefficient (excluding derivation)	2	
	18	Lasers	2	
	Section	ons 1.1 - 1.7 of chapter 1 of Book 2 (Chapter 1 complete)		
IV		8	14	
	19	Microwave spectroscopy	2	
	20	Infrared Spectroscopy (vibration spectra only)	2	
	21	Electronic spectroscopy	2	
	22	Raman spectroscopy: Introduction, Quantum theory of Raman scattering, Rotational Raman spectra of linear molecules	2	
	Sectio	ons 8.6, 8.7, 8.8 of chapter 8 of Book1, sections 8.1, 8.2.2 and 8.3.1 of		
	chapt	er 8 of Book 2		
V		PRACTICALS	30	
	decid exper	uct any 6 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The 7 th iment may also be selected from the given list. ssary theory of experiments can be given as Assignment/ Seminar.		
	1	 Band gap of a semiconductor Measure the reverse bias current/resistance of a 		
		 semiconductor diode as a function of temperature, using Carey Foster's bridge or Potentiometer or ExpEYES or any other suitable method. Plot the logarithm of resistance/current against the inverse of temperature. 		

	• From the slope, the band gap from the semiconductor can be obtained.	
2	Wavelength of laser using grating	
	 The laser light diffracted from the transmission grating is allowed to fall on a screen and record the maxima points in a paper and calculate the wavelength of the laser. Determine the number of lines/ meter of the grating using the 	
	green line of the mercury.	
3	 Single slit diffraction using laser - Determination of slit width. The laser light diffracted from the narrow slit is allowed to fall on a screen and record the maxima or minima points in a paper. From the width of the central maxima or the position of minimum intensity points, calculate the slit width. Verify the slit width using a traveling microscope. Wavelength of laser can be found using diffraction grating of known N. 	
4	 Determine the numerical aperture (NA) of an optical fiber using a laser Couple the light from the laser source onto one of the fiber ends and the light coming from the other end is allowed to fall on a screen(sheet having circular markings) placed perpendicular to the axis of the fiber. Measure the diameter of the laser beam on the screen and the distance between the screen and fiber output end and hence calculate the NA. 	
5	Determination of the dispersive power of a solid prism using a spectrometer • Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer.	

	Calculate the refractive indices corresponding to the colors
	and find the dispersive power of the material of the prism for
	two pairs of wavelengths.
6	Spectrometer-Determination of the Cauchy's constants of the
	given prism
	• Find the angle of the prism, the minimum deviation angles of
	the prominent lines of the mercury spectrum and hence
	calculate the refractive indices for the colors.
	• Determine A and B from the $\mu - \frac{1}{\lambda^2}$ graph.
7	Determine the refractive index of (a) given liquid and (b)the
	material of a lens, by forming a liquid lens.
	• Through this experiment the students are expected to get the
	concepts of image formation, combination of lenses and
	radius of curvature of the surface of lens.
	• Determine the radius of curvature of the lens by Boy's method
	and hence calculate the refractive indices.
8	Determine the focal length of the combination of two lenses
	separated by a distance.
	• Determine the focal lengths, f1 and f2 of the two lenses using
	an illuminated cross-slit screen holder, nodal slide(for placing
	the lenses) and plane mirror arrangement.
	the lenses) and plane mirror arrangement.
	the lenses) and plane mirror arrangement.Place the two lenses separated by a distance d, determine the
	 the lenses) and plane mirror arrangement. Place the two lenses separated by a distance d, determine the focal length, F of the combination and verify the relation
	the lenses) and plane mirror arrangement. • Place the two lenses separated by a distance d, determine the focal length, F of the combination and verify the relation • $\frac{1}{F} = \frac{1}{f1} + \frac{1}{f2} - \frac{d}{f1f2}$.
	 the lenses) and plane mirror arrangement. Place the two lenses separated by a distance d, determine the focal length, F of the combination and verify the relation ¹/_F = ¹/_{f1} + ¹/_{f2} - ^d/_{f1f2}. The combination of the lenses in the eyepiece of the
	 the lenses) and plane mirror arrangement. Place the two lenses separated by a distance d, determine the focal length, F of the combination and verify the relation ¹/_F = ¹/_{f1} + ¹/_{f2} - ^d/_{f1f2}. The combination of the lenses in the eyepiece of the spectrometer/ travelling microscope may be used for the

9	Air wedge-determination of the radius of a thin wire/human	
	hair/thin foil.	
	• Form interference fringes using sodium-source, in the	
	air-film in between wedge formed by placing the given	
	sample between the glass plates.	
	• Measure the positions of the successive dark bands using a	
	travelling microscope and determine the angle of the wedge	
	and thickness of the sample given.	
10	Newton's rings-determination of the wavelength of sodium light	
	• Form of Newton's rings in the air-film in between a	
	plano-convex lens and a glass plate using sodium-source.	
	• Determine the radius of curvature by Boy's method and	
	determine the wavelength of the source.	
11	Construction of the center tapped full wave rectifiers and	
	regulated power supply	
	• Construct a center tapped full wave rectifier without filter and	
	with a filter.	
	• Measure the AC and DC voltages using a multimeter and	
	calculate the ripple factor without and with a filter.	
	• Observe the variation of the ripple factor with load resistance,	
	when filter is used.	
	• Construct 5V/12V regulated power supply using 78XX IC.	
12	Study the characteristics of Zener diode and construct a voltage	
	regulator	
	• Study the V-I characteristics of zener diode and hence	
	determine the breakdown voltage.	
	• <u>https://expeyes.in/experiments/electronics/zenerIV.html</u>	
	• Construct a voltage regulator using a zener diode and	
	determine the percentage of voltage regulation.	
13	Flywheel- Determination of the Moment of Inertia	

		• This experiment aims to help students grasp the concept of					
		energy conservation and the dynamics of rotation.					
		• Do at least 9 trials for different masses and number of turns					
		wound on the axil.					
	14	Compound Pendulum- Acceleration Due to Gravity and Moment					
		of Inertia and Verification of Parallel Axis Theorem					
		• Plot a graph of distance of knife edge from one end Vs period					
		of oscillations. Using the measurement from the graph,					
calculate g.							
		• Calculate the radius of gyration and hence the moment of					
		inertia about CM. Compare the result obtained by the direct					
		calculation $I_{CM} = \frac{ML^2}{12}$					
	15	Sonometer - Determine the Frequency of AC					
		• Estimate the linear mass density of the wire.					
		• Draw $L^2 - m$ graph and from the slope calculate the					
		frequency.					
Books an	d Refer	ences:	<u> </u>				
1.Conce	pts of M	Iodern Physics, Arthur Beiser 6th Edition (Book 1)					
2. Molect	ular stru	cture and spectroscopy, (Second edition) G. Aruldhas (Book 2)					
3.Kittel's	Introdu	action to Solid State Physics, Wiley India Edition					
4.Solid S	tate Phy	vsics Structure and properties of materials by M.A.Wahab (Third Edition	ι)				
5.Solid S	tate Phy	vsics" by Neil W. Ashcroft and N. David Mermin.					
6.Solid S	tate Phy	vsics: Essential Concepts by David W. Snoke.					
7.Princip	les of M	Iolecular Spectroscopy by Colin N. Banwell and Elaine M. McCash					
8. Spectra	a of Ato	oms and Molecules by Peter F. Bernath					
9.Molecu	ılar Spec	ctroscopy by Jeanne L. McHale					
10. <u>https:</u>	://phyph	<u>ox.org/</u>					
11 <u>https:/</u>	//physlet	ts.org/tracker/					
12. <u>https:</u>	//expey	es.in/					
1							

	PSO	PSO	PSO	PSO4			PO1	PO2	PO3	PO4	PO5	PO	PO
	1	2	3		05	6						6	1
CO 1	3	2	2	1	2	2	3	2	2	2	3	3	0
CO 2	1	3	2	2	2	1	2	3	2	1	3	2	0
CO 3	1	2	3	2	2	2	2	2	3	1	3	3	0
CO 4	2	1	2	2	2	1	2	2	2	1	3	2	0
CO 5	2	1	3	2	3	1	2	1	2	2	3	3	0
CO 6	2	3	1	2	3	3	2	2	2	1	3	3	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/ Practical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
	Flactical Exam	l/viva	Evaluation	Examinations
CO 1				✓
CO 2	✓	1		✓
CO 3	\checkmark	✓		✓
CO 4	\checkmark	✓		✓
CO 5	1	1		✓
CO 6		1	1	